《年轻漂亮的老师6》在线观看_CHINESE老头老太婆_亚洲第一av第二次av_国产午夜精品一区理论片飘花_哥布林杀手动漫

  設(shè)為主頁 加入收藏 English
 
 
 
 新聞動態(tài)
 行業(yè)動態(tài)
 展會信息
 誠聘英才
 
 

Modification of Cellulose Nanocrystals with Quaternary Ammonium-Containing Hyperbranched Polyethylene Ionomers by Ionic Assembly

發(fā)布時間:2017-05-16  點(diǎn)擊次數(shù):259  新聞來源:
 

作者Lingqi Huang, Zhibin Ye, and Richard Berry

 School of Engineering, Laurentian University, Sudbury, Ontario P3E 2C6, Canada

 CelluForce Inc, Montreal, Quebec H3A 1K2, Canada

 

摘要:In this article, we demonstrate the first surface modification of cellulose nanocrystals (CNCs) with quaternary ammonium-containing ionomers by ionic binding of their positively charged ammonium ions onto the negatively charged surface of CNCs. A range of hyperbranched polyethylene ionomers (I1–I6) having different ionic content (0.2–2.3 mol %) has been designed and employed for this purpose. The simple dropwise addition and mixing of the aqueous dispersion of CNCs with the ionomer solution in tetrahydrofuran (THF) conveniently renders the ionomer-modified CNCs (mCNC1–mCNC6). The presence of adsorbed ionomers on the modified CNCs is confirmed with spectroscopic and X-ray diffraction evidence and quantified through thermogravimetric analysis. The effects of the ionomer to CNC feed mass ratio and the ionomers of different ionic content on the modification have been examined. A study on the morphology of the modified CNCs by atomic force microscopy discloses the occurrence of side-to-side and/or end-to-end assembly of the CNC rods due to the “cross-linking” or bridging effects of the multidentate ionomers. Because of the hydrophobic hyperbranched polyethylene segments in the adsorbed ionomers, the modified CNCs can be dispersed in nonpolar or low-polarity organic solvents (such as THF, toluene, and chloroform). In particular, the THF dispersions of modified CNCs prepared with ionomers having ionic content 0.7 mol % (I3I6) behave as thixotropic organo-gels at concentrations 40 mg mL1. Further, the modified CNCs better disperse than unmodified CNCs in a hydrophobic ethylene–olefin copolymer (EOC) elastomer matrix and show better thermal stability than a surfactant-modified CNC sample. Tensile testing confirms that the EOC composites, filled with the ionomer-modified CNCs, are significantly reinforced with a tensile modulus nearly doubled that of neat EOC, and they demonstrate better elongation at break relative to those filled with unmodified CNCs or surfactant-modified CNCs.

 
 
上海市普陀區(qū)嵐皋路567號1108-26室 電話:021-62665073 400-718-7758 傳真:021-62761957
美國布魯克海文儀器公司上海代表處 版權(quán)所有  管理登陸 ICP備案號:滬ICP備19006074號-2 技術(shù)支持:化工儀器網(wǎng)