《年轻漂亮的老师6》在线观看_CHINESE老头老太婆_亚洲第一av第二次av_国产午夜精品一区理论片飘花_哥布林杀手动漫

  設為主頁 加入收藏 English
 
 
 
 新聞動態(tài)
 行業(yè)動態(tài)
 展會信息
 誠聘英才
 
 

Aggregation morphology of planar engineered nanomaterials

發(fā)布時間:2020-10-24  點擊次數(shù):194  新聞來源:
 

作者 S. Drew StoryaStephen BoggsaLinda M.Guineyb,Mani Rameshb,Mark C.Hersamb,C. Jeffrey Brinkerc,Sharon L.Walkerad

aDepartment of Chemical and Environmental Engineering, University of California, Riverside, CA, USA

bDepartments of Materials Science and Engineering, Chemistry, and Medicine, Northwestern University, Evanston, IL, USA

cDepartment of Chemical and Biological Engineering, University of New Mexico, Albuquerque, NM, USA

dDepartment of Civil, Architectural, and Environmental Engineering, Drexel University, Philadelphia, PA, USA

 

 

 

摘要:In this investigation, the utility of a static light scattering (SLS) technique to characterize aggregate morphology of two-dimensional engineered nanomaterials (2D ENMs) was systematically evaluated. The aggregation of graphene oxide (GO) and lithiated-molybdenum disulfide (Li-MoS2) were measured and compared to that of a spherical reference colloid, carboxylate-modified latex (CML) nanoparticles. The critical coagulation concentration (CCC) for all dispersions was determined via analysis of aggregation kinetics using time-resolved dynamic light scattering. This technique allowed for the elucidation of the transition from the reaction-limited aggregation (RLA) regime to diffusion-limited aggregation (DLA). The findings of this study support the aggregation trends predicted by Derjaguin-Landau-Verwey-Overbeek (DLVO) theory and recent computer simulations of aggregation kinetics. For all nanomaterials, as ionic strength increased towards the respective the CCC, fractal dimension decreased; any increase in ionic strength beyond the CCC did not yield significant change in fractal dimension. Across comparable primary particle sizes and using both carbonaceous (GO) and inorganic (Li-MoS2) 2D ENMs, this study further supports the use of SLS for the measurement of fractal dimension for 2D materials. To further support this claim, the aggregate morphology of GO in both RLA and DLA regimes was measured via cryogenic transmission electron microscopy.

 
 
上海市普陀區(qū)嵐皋路567號1108-26室 電話:021-62665073 400-718-7758 傳真:021-62761957
美國布魯克海文儀器公司上海代表處 版權所有  管理登陸 ICP備案號:滬ICP備19006074號-2 技術支持:化工儀器網(wǎng)