《年轻漂亮的老师6》在线观看_CHINESE老头老太婆_亚洲第一av第二次av_国产午夜精品一区理论片飘花_哥布林杀手动漫

  設(shè)為主頁 加入收藏 English
 
 
 
 新聞動態(tài)
 行業(yè)動態(tài)
 展會信息
 誠聘英才
 
 

NanoBrook產(chǎn)品應(yīng)用-25-ZetaPALS

發(fā)布時間:2015-05-27  點(diǎn)擊次數(shù):462  新聞來源:
 

文獻(xiàn)名: A high yield, one-pot dialysis-based process for self-assembly of near infrared absorbing gold nanoparticles

作者: Dhruvinkumar Patel , Kurtis T. James , Martin O’Toole, , Guandong Zhang , Robert S. Keynton , André M. Gobin
Department of Bioengineering, University of Louisville, Louisville, KY 40292, United States

摘要:
Hypothesis
A facile, dialysis-based synthesis of stable near infrared (nIR) absorbing plasmonic gold nanoparticles (λmax = 650–1000 nm) will increase the yield of nIR particles and reduce the amount of gold colloid contaminant in the product mixture.

Experiments
Chloroauric acid and sodium thiosulfate were reacted using a dialysis membrane as a reaction vessel. Product yield and composition was determined and compared to traditional synthesis methods. The product particle distribution, yield, and partitioning of gold between dispersed product and membrane-adsorbed gold were determined.

Findings
The synthesis results in polydisperse particle suspensions comprised of 70% spheroid-like particles, 27% triangular plates, and 3% rod-like structures with a 3% batch-to-batch variation and a prominent nIR absorption band with λmax = 650–1000 nm. The amount of small gold colloid (λmax = 530 nm; d < 10 nm) in the isolated product was reduced by 96% compared to traditional methods. Additionally, 91.1% of the gold starting material is retained in the solution-based nanoparticle mixture while 8.2% is found on the dialysis membrane. The synthesis results in a quality ratio (QR = AbsnIR/Abs530) of 1.7–2.4 (twice that of previous techniques) and 14.3 times greater OD∗ml yield of the nIR-absorbing nanoparticle fraction.

關(guān)鍵詞:Gold nanoparticles; Near infrared; Synthesis; Coating; Dialysis; DiaSynth

 

 
 
上海市普陀區(qū)嵐皋路567號1108-26室 電話:021-62665073 400-718-7758 傳真:021-62761957
美國布魯克海文儀器公司上海代表處 版權(quán)所有  管理登陸 ICP備案號:滬ICP備19006074號-2 技術(shù)支持:化工儀器網(wǎng)